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Abstract

We prove the Schröder case, i.e. the case 〈·, en−dhd〉, of the conjecture of
Haglund, Remmel and Wilson [12] for ∆hm∆

′
en−k−1

en in terms of decorated
partially labelled Dyck paths, which we call generalized Delta conjecture.
This result extends the Schröder case of the Delta conjecture proved of
Haglund [5], which in turn generalized the q, t-Schröder in [8]. The proof
gives a recursion for these polynomials that extends the ones known for the
aforementioned special cases. Also, we give another combinatorial interpre-
tation of the same polynomial in terms of a new bounce statistic. Moreover,
we give two more interpretations of the same polynomial in terms of dou-
bly decorated parallelogram polyominoes, extending some of the results in
[4], which in turn extended results in [1]. Also, we provide combinatorial
bijections explaining some of the equivalences among these interpretations.

Keywords: Delta conjecture, Macdonald polynomials

1. Introduction

In [12], Haglund, Remmel and Wilson conjectured a combinatorial for-
mula for ∆′

en−k−1
en in terms of decorated labelled Dyck paths, which they

called Delta conjecture, after the so-called delta operators ∆′
f introduced in

[2] by Bergeron, Garsia, Haiman, and Tesler for any symmetric function f .
The special case k = 0 gives precisely the Shuffle conjecture in [10], now a

theorem of Carlsson and Mellit [3]. The latter turns out to be a combinatorial
formula for the Frobenius characteristic of the Sn-module of diagonal har-
monics studied by Garsia and Haiman in relation to the famous n! conjecture,
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now n! theorem of Haiman [13].
Though the full Delta conjecture is still open, several of its consequences

have been recently proved: for example, the specializations at q = 0 and
at q = 1 have been proved in [6] and [15] respectively. Also, the special
cases 〈·, en−dhd〉 and 〈·, hn−dhd〉 have been proved in [5] and [4] respectively.
Moreover, combined with the results in [5], a “compositional” refinement of
the case 〈·, en−dhd〉 is proved in [17].

Again in [12], the authors proposed a generalization of the Delta con-
jecture, which predicts a combinatorial interpretation of ∆hm∆

′
en−k−1

en in
terms of decorated partially labelled Dyck paths: this is what we call the
generalized Delta conjecture.

In the present work we prove the so-called Schröder case of the generalized
Delta conjecture, i.e. the special case 〈·, en−dhd〉. This extends some of the
results in [5], which in turn extended the q, t-Schröder of Haglund [8].

As in the aforementioned works, to prove our result, we will give a recur-
sion, which generalizes the ones in the literature. The essential tool on the
symmetric function side will be the most technical result of [5].

Also, we introduce a statistic bounce which will provide another combi-
natorial interpretation of the same polynomial, and we give a statistic pre-
serving bijection between the two interpretations.

It turns out that our recursion is given by iterating a simpler recursion.
We will explain this intermediate recursion by giving another combinatorial
interpretation of the same polynomial in terms of doubly decorated parallel-
ogram polyominoes. This result extends some of the results in [4], which in
turn extended the results in [1].

The paper is organized in the following way: in Section 2 we recall the
statement of the generalized Delta conjecture of [12] by introducing the rele-
vant definitions and notations. In Section 3 we establish the needed results of
symmetric function theory. In particular we introduce a family of plethystic
formulae, and we show that they satisfy a certain recursion and that they
sum to the case 〈·, en−dhd〉 of the generalized Delta conjecture. In Section 4
we prove the main result of this work, i.e. the case 〈·, en−dhd〉 of the gen-
eralized Delta conjecture. Moreover, we prove also another combinatorial
interpretation in terms of a new bounce statistic. We conclude the section
with a statistic preserving bijection. In Section 5 we prove two further combi-
natorial interpretations of the same polynomial in terms of doubly decorated
parallelogram polyominoes, and we give a bijection explaining their equiv-
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alence. In Section 6 we explain combinatorially the relation between the
results in Section 4 and the ones in Section 5. Finally, in Section 7 we state
an intriguing open problem.

2. Statement of the generalized Delta conjecture

In [12], the authors conjectured a combinatorial interpretation for the
symmetric function

∆hm∆
′
en−k−1

en

in terms of partially labelled decorated Dyck paths, known as the generalized
Delta conjecture because it reduces to the Delta conjecture when m = 0. We
give the necessary definitions.

Definition 2.1. A Dyck path of size n is a lattice path going from (0, 0)
to (n, n), using only north and east steps and staying weakly above the line
x = y (also called the main diagonal). The set of Dyck paths of size n will be
denoted by D(n). A partially labelled Dyck path is a Dyck path whose vertical
steps are labelled with (not necessarily distinct) non-negative integers such
that the labels appearing in each column are strictly increasing from bottom
to top, and 0 does not appear in the first column. The set of partially labelled
Dyck paths with m zero labels and n nonzero labels is denoted by PLD(m,n).

Partially labelled Dyck paths differ from labelled Dyck paths only in that
0 is allowed as a label in the former and not in the latter.

Definition 2.2. We define for each D ∈ PLD(m,n) a monomial in the vari-
ables x1, x2, . . . we set

xD :=
n!

i=1

xli(D)

where li(D) is the label of the i-th vertical step of D (the first being at the
bottom). Notice that x0 does not appear, which explains the word partially.

Definition 2.3. Let D be a (partially labelled) Dyck path of size n+m. We
define its area word to be the string of integers a(D) = a1(D) · · · an+m(D)
where ai(D) is the number of whole squares in the i-th row (from the bottom)
between the path and the main diagonal.
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Definition 2.4. The rises of a Dyck path D are the indices

Rise(D) := {2 ≤ i ≤ n+m | ai(D) > ai−1(D)},
or the vertical steps that are directly preceded by another vertical step. Tak-
ing a subset DRise(D) ⊆ Rise(D) and decorating the corresponding vertical
steps with a ∗, we obtain a decorated Dyck path, and we will refer to these
vertical steps as decorated rises.

The set of partially labelled decorated Dyck paths with m zero labels, n
nonzero labels and k decorated rises is denoted by PLD(m,n)∗k. See Figure 1
for an example.

We define two statistics on this set.

Definition 2.5. We define the area of a (partially labelled) decorated Dyck
path D as

area(D) :=
"

i ∕∈DRise(D)

ai(D).

For a more visual definition, the area is the number of whole squares
that lie between the path and the main diagonal, except for the ones in the
rows containing a decorated rise. For example, the decorated Dyck path in
Figure 1 has area 6.

Notice that the area does not depend on the labels.

Definition 2.6. Let D ∈ PLD(m,n). For 1 ≤ i < j ≤ n +m, we say that
the pair (i, j) is an inversion if

• either ai(D) = aj(D) and li(D) < lj(D) (primary inversion),

• or ai(D) = aj(D) + 1 and li(D) > lj(D) (secondary inversion).

Then we define

dinv(D) := #{0 ≤ i < j ≤ n+m | (i, j) is an inversion.}
For example, the decorated Dyck path in Figure 1 has 1 primary inversion

(the pair (2, 4)) and 2 secondary inversions (the pairs (2, 3) and (5, 6)), so its
dinv is 3. Notice that the decorations on the rises do not affect the dinv.

The following conjecture is stated in [12].

Conjecture 2.7 (Generalized Delta).

∆hm∆
′
en−k−1

en =
"

D∈PLD(m,n)∗k

qdinv(D)tarea(D)xD.
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Figure 1: Example of an element in PLD(2, 6)∗2.

3. Symmetric functions

For all the undefined notations and the unproven identities, we refer to
[5, Section 1], where definitions, proofs, and/or references can be found. In
the next subsection we will limit ourselves to introduce some notation, while
in the following one we will recall some identities that are going to be useful
in the sequel. In the third and final subsection we will prove the main results
on symmetric functions of this work.

For more references on symmetric functions cf. also [14], [16] and [9].

3.1. Notation
We denote by Λ =

#
n≥0 Λ

(k) the graded algebras of symmetric functions
with coefficients in Q(q, t), and by 〈 , 〉 the Hall scalar product on Λ, which
can be defined by saying that the Schur functions form an orthonormal basis.

The standard bases of the symmetric functions that will appear in our
calculations are the complete {hλ}λ, elementary {eλ}λ, power {pλ}λ and
Schur {sλ}λ bases.

We will use implicitly the usual convention that e0 = h0 = 1 and ek =
hk = 0 for k < 0.

For a partition µ ⊢ n, we denote by

$Hµ := $Hµ[X] = $Hµ[X; q, t] =
"

λ⊢n

$Kλµ(q, t)sλ (1)
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the (modified) Macdonald polynomials, where

$Kλµ := $Kλµ(q, t) = Kλµ(q, 1/t)t
n(µ) with n(µ) =

"

i≥1

µi(i− 1) (2)

are the (modified) Kostka coefficients (see [9, Chapter 2] for more details).
The set { $Hµ[X; q, t]}µ is a basis of the ring of symmetric functions Λ.

This is a modification of the basis introduced by Macdonald [14].
If we identify the partition µ with its Ferrers diagram, i.e. with the

collection of cells {(i, j) | 1 ≤ i ≤ µj, 1 ≤ j ≤ ℓ(µ)}, then for each cell
c ∈ µ we refer to the arm, leg, co-arm, and co-leg (denoted respectively as
aµ(c), lµ(c), aµ(c)

′, lµ(c)
′) as the number of cells in µ that are strictly to the

right, above, to the left and below c in µ, respectively. See Figure 2 for an
example.

Arm

Leg

Co-leg

Co-arm

c

Figure 2: Definition of arm, co-arm, leg and co-leg for the cell c = (5, 4) in the partition
(15, 15, 9, 9, 9, 5, 5, 3, 3, 1).

We set M := (1− q)(1− t) and we define for every partition µ

Bµ := Bµ(q, t) =
"

c∈µ
qa

′
µ(c)tl

′
µ(c) (3)

Tµ := Tµ(q, t) =
!

c∈µ
qa

′
µ(c)tl

′
µ(c) (4)

Πµ := Πµ(q, t) =
!

c∈µ/(1)

%
1− qa

′
µ(c)tl

′
µ(c)

&
(5)

wµ := wµ(q, t) =
!

c∈µ

'
qaµ(c) − tlµ(c)+1

( '
tlµ(c) − qaµ(c)+1

(
. (6)

We will make extensive use of the plethystic notation (cf. [9, Chapter 1]).
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We define the nabla operator on Λ by

∇ $Hµ := Tµ
$Hµ for all µ, (7)

and we define the delta operators ∆f and ∆′
f on Λ by

∆f
$Hµ := f [Bµ(q, t)] $Hµ and ∆′

f
$Hµ := f [Bµ(q, t)− 1] $Hµ, for all µ.

(8)

Observe that on the vector space of symmetric functions homogeneous of
degree n, denoted by Λ(n), the operator ∇ equals ∆en . Moreover, for every
1 ≤ k ≤ n,

∆ek = ∆′
ek
+∆′

ek−1
on Λ(n), (9)

and for any k > n, ∆ek = ∆′
ek−1

= 0 on Λ(n), so that ∆en = ∆′
en−1

on Λ(n).

For a given k ≥ 1, we define the Pieri coefficients c
(k)
µν and d

(k)
µν by setting

h⊥
k
$Hµ[X] =

"

ν⊂kµ

c(k)µν
$Hν [X], (10)

ek

)
X

M

*
$Hν [X] =

"

µ⊃kν

d(k)µν
$Hµ[X], (11)

where ν ⊂k µ means that ν is contained in µ (as Ferrers diagrams) and
µ/ν has k lattice cells, and the symbol µ ⊃k ν is analogously defined. The
following identity is well-known:

c(k)µν =
wµ

wν

d(k)µν . (12)

We will also use the symmetric functions En,k, that were introduced in
[7] by means of the following expansion:

en

)
X
1− z

1− q

*
=

n"

k=1

(z; q)k
(q; q)k

En,k, (13)

where

(a; q)s := (1− a)(1− qa)(1− q2a) · · · (1− qs−1a) (14)
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is the usual q-rising factorial.
Observe that

en =
n"

k=1

En,k. (15)

Recall also the standard notation for q-analogues: for n, k ∈ N, we set

[0]q := 0, and [n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1 for n ≥ 1,

(16)

[0]q! := 1 and [n]q! := [n]q[n− 1]q · · · [2]q[1]q for n ≥ 1, (17)

and
)
n

k

*

q

:=
[n]q!

[k]q![n− k]q!
for n ≥ k ≥ 0, while

)
n

k

*

q

:= 0 for n < k.

(18)

3.2. Some basic identities
The following identity is well-known: for any symmetric function f ∈ Λ(n),

〈∆edf, hn〉 = 〈f, edhn−d〉. (19)

We will use the following form of Macdonald-Koornwinder reciprocity : for
all partitions α and β

$Hα[MBβ]

Πα

=
$Hβ[MBα]

Πβ

. (20)

The following identity is also known as the Cauchy identity :

en

)
XY

M

*
=

"

µ⊢n

$Hµ[X] $Hµ[Y ]

wµ

for all n. (21)

We need the following well known proposition.
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Proposition 3.1. For n ∈ N we have

en[X] = en

)
XM

M

*
=

"

µ⊢n

MBµΠµ
$Hµ[X]

wµ

. (22)

Moreover, for all k ∈ N with 0 ≤ k ≤ n, we have

hk

)
X

M

*
en−k

)
X

M

*
=

"

µ⊢n

ek[Bµ] $Hµ[X]

wµ

. (23)

Using (21) with Y = [j]q =
1−qj

1−q
, we get the following well-known expan-

sion:

en

)
X
1− qj

1− q

*
=

"

µ⊢n

$Hµ[X] $Hµ[M [j]q]

wµ

= (1− qj)
"

µ⊢n

Πµ
$Hµ[X]hj[(1− t)Bµ]

wµ

. (24)

We need another theorem of Haglund: the following is essentially [8,
Theorem 2.5].

Theorem 3.2. For k, n ∈ N with 1 ≤ k ≤ n,

∇En,k = tn−k(1− qk)Πhk

)
X

1− q

*
hn−k

)
X

M

*
, (25)

where Π is the invertible linear operator defined by

Π $Hµ[X] = Πµ
$Hµ[X] for all µ. (26)

The main ingredient for proving our recursion on the symmetric function
side is the following crucial theorem from [5].

Theorem 3.3 ([5, Theorem 3.1]). For m, k ≥ 1 and ℓ ≥ 0, we have

"

γ⊢m

$Hγ[X]

wγ

hk[(1− t)Bγ]eℓ[Bγ] =
ℓ"

j=0

tℓ−j

k"

s=0

q(
s
2)
)
s+ j

s

*

q

)
k + j − 1

s+ j − 1

*

q

(27)

× hs+j

)
X

1− q

*
hℓ−j

)
X

M

*
em−s−ℓ

)
X

M

*
.
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3.3. The family F
(d,ℓ)
n,k;p

Set

F
(d,ℓ)
n,k;p := tn−k−ℓ〈∆hn−k−ℓ

∆eℓen+p−d

)
X
1− qk

1− q

*
, ephn−d〉. (28)

Notice that F
(d,ℓ)
n,k;0 = F

(d,ℓ)
n,k of [5]*Section 4.

The family of plethystic formulae F
(d,ℓ)
n,k;p satisfy the following recursion.

Theorem 3.4. For k, ℓ, d, p ≥ 0, n ≥ k + ℓ and n+ p ≥ d, the F
(d,ℓ)
n,k;p satisfy

the following recursion: for n ≥ 1

F (d,ℓ)
n,n;p = δℓ,0q

(n−d
2 )

)
n

n− d

*)
n+ p− 1

p

*
(29)

and, for n ≥ 1 and 1 ≤ k < n,

F
(d,ℓ)
n,k;p = tn−ℓ−k

p"

j=0

k"

s=0

q(
s
2)
)
k

s

*

q

)
k + j − 1

j

*

q

F
(n+p−d−ℓ,n−d−s)
n+p−d,s+j;n−ℓ−k , (30)

with initial conditions

F
(d,ℓ)
0,k;p = δk,0δp,0δd,0δℓ,0 and F

(d,ℓ)
n,0;p = δn,0δp,0δd,0δℓ,0. (31)

Proof. Because of the operator ∆hn−k−ℓ
in the definition of F (d,ℓ)

n,k;p, it is clear
that F

(d,ℓ)
n,n;p = 0 for ℓ ∕= 0. For ℓ = 0, using (24), we get

F (d,0)
n,n;p =

+
en+p−d

)
X
1− qn

1− q

*
, hn−dep

,

=
"

γ⊢n+p−d

$Hγ[M [n]q]

wγ

ep[Bγ]

(using (23)) = hp[[n]q]en−d[[n]q]

=

)
n+ p− 1

p

*

q

q(
n−d
2 )

)
n

n− d

*

q
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where in the last equality we used well-known identities (cf. [16, Theo-
rem 7.21.2]). This proves (29). For k < n we have

F
(d,ℓ)
n,k;p = tn−ℓ−k〈∆hn−ℓ−k

∆eℓen+p−d

)
X
1− qk

1− q

*
, ephn−d〉

(using (24), (19)) = tn−ℓ−k(1− qk)
"

γ⊢n+p−d

Πγ

wγ

hk[(1− t)Bγ]

× hn−ℓ−k[Bγ]eℓ[Bγ]ep[Bγ]

(using (23)) = tn−ℓ−k(1− qk)
"

γ⊢n+p−d

Πγ

wγ

hk[(1− t)Bγ]ep[Bγ]

×
"

µ⊢n−k

en−ℓ−k[Bµ]
$Hµ[MBγ]

wµ

(using (20)) = tn−ℓ−k
"

µ⊢n−k

en−ℓ−k[Bµ]
Πµ

wµ

(1− qk)

×
"

γ⊢n+p−d

$Hγ[MBµ]

wγ

hk[(1− t)Bγ]ep[Bγ]
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(using (27)) = tn−ℓ−k
"

µ⊢n−ℓ−k+p

en−ℓ−k[Bµ]
Πµ

wµ

(1− qk)

×
p"

j=0

tp−j

k"

s=0

q(
s
2)
)
s+ j

s

*

q

)
k + j − 1

s+ j − 1

*

q

× hs+j [(1− t)Bµ]hp−j [Bµ] en−d−s [Bµ]

= tn−ℓ−k

p"

j=0

tp−j

k"

s=0

q(
s
2)
)
k

s

*

q

)
k + j − 1

j

*

q

(1− qs+j)

×
"

µ⊢n−k

en−ℓ−k[Bµ]
Πµ

wµ

× hs+j [(1− t)Bµ]hp−j [Bµ] en−d−s [Bµ]

(using (24) and (19)) = tn−ℓ−k

p"

j=0

k"

s=0

q(
s
2)
)
k

s

*

q

)
k + j − 1

j

*

q

× tp−j〈∆hp−j
∆en−d−s

en−k

)
X
1− qs+j

1− q

*
, en−ℓ−khℓ〉

= tn−ℓ−k

p"

j=0

k"

s=0

q(
s
2)
)
k

s

*

q

)
k + j − 1

j

*

q

F
(n+p−d−ℓ,n−d−s)
n+p−d,s+j;n−ℓ−k .

This proves (30). The initial conditions are easy to check.

Iterating the previous recursion we get the following immediate corollary.

Corollary 3.5. For k, ℓ, d, p ≥ 0, n ≥ k+ ℓ and n+ p ≥ d, the F
(d,ℓ)
n,k;p satisfy

the following recursion: for n ≥ 1

F (d,ℓ)
n,n;p = δℓ,0q

(n−d
2 )

)
n

n− d

*)
n+ p− 1

p

*

and, for n ≥ 1 and 1 ≤ k < n,

F
(d,ℓ)
n,k;p = tn−k−ℓ

p"

j=0

k"

s=0

q(
s
2)
)
k

s

*

q

)
k + j − 1

j

*

q

× tp−j

n−k−ℓ"

u=0

s+j"

v=0

q(
v
2)
)
s+ j

v

*

q

)
s+ j + u− 1

u

*

q

F
(d−k+s,ℓ−v)
n−k,u+v;p−j,
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with initial conditions

F
(d,ℓ)
0,k;p = δk,0δp,0δd,0δℓ,0 and F

(d,ℓ)
n,0;p = δn,0δp,0δd,0δℓ,0. (32)

We need a lemma.

Lemma 3.6. For k, ℓ, d, p ≥ 0, n ≥ k + ℓ and n+ p ≥ d, we have

F
(d,ℓ)
n,k;p =

"

γ⊢n+p−d

(Π−1∇En−ℓ,k[X])
--
X=MBγ

Πγ

wγ

eℓ[Bγ]ep[Bγ], (33)

where Π is the operator defined in (26).

Proof. We have

n−ℓ"

k=1

F
(d,ℓ)
n,k;p =

n−ℓ"

k=1

tn−ℓ−k

+
∆hn−ℓ−k

∆eℓen+p−d

)
X
1− qk

1− q

*
, hn−dep

,

=
n−ℓ"

k=1

tn−ℓ−k(1− qk)
"

γ⊢n+p−d

Πγ

wγ

hk[(1− t)Bγ]hn−ℓ−k[Bγ]eℓ[Bγ]ep[Bγ]

=
n−ℓ"

k=1

"

γ⊢n+p−d

(Π−1∇En−ℓ,k[X])
--
X=MBγ

Πγ

wγ

eℓ[Bγ]ep[Bγ],

where in the second equality we used (24) and (19), and in the last one we
used (25).

The interest in the polynomials F
(d,ℓ)
n,k;p lies in the following theorem.

Theorem 3.7. For ℓ, d, p ≥ 0, n ≥ ℓ+ 1 and n ≥ d, we have

n−ℓ"

k=1

F
(d,ℓ)
n,k;p = 〈∆hp∆

′
en−ℓ−1

en, en−dhd〉.
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Proof. Using (33), we have

n−ℓ"

k=1

F
(d,ℓ)
n,k;p =

n−ℓ"

k=1

"

γ⊢n+p−d

(Π−1∇En−ℓ,k[X])
--
X=MBγ

Πγ

wγ

eℓ[Bγ]ep[Bγ]

(using (13)) =
"

γ⊢n+p−d

(Π−1∇en−ℓ[X])
--
X=MBγ

Πγ

wγ

eℓ[Bγ]ep[Bγ]

(using (22)) =
"

γ⊢n+p−d

"

µ⊢n−ℓ

MBµTµ

$Hµ[MBγ]

wµ

Πγ

wγ

eℓ[Bγ]ep[Bγ]

=
"

γ⊢n+p−d

"

µ⊢n−ℓ

MBµTµ

wµ

Πγ

wγ

ep[Bγ]eℓ

)
MBγ

M

*
$Hµ[MBγ]

=
"

γ⊢n+p−d

"

µ⊢n−ℓ

MBµTµ

wµ

Πγ

wγ

ep[Bγ]
"

α⊃ℓµ

d(ℓ)αµ
$Hα[MBγ]

(using (12)) =
"

α⊢n

MΠα

wα

"

µ⊂ℓα

BµTµc
(ℓ)
αµ

"

γ⊢n+p−d

ep[Bγ]
$Hγ[MBα]

wγ

(using (23)) =
"

α⊢n

MΠα

wα

hp[Bα]en−d[Bα]
"

µ⊂ℓα

BµTµc
(ℓ)
αµ

=
"

α⊢n

MΠα

wα

hp[Bα]en−d[Bα]en−ℓ−1[Bα − 1]Bα

(using (19)) = 〈∆hp∆
′
en−ℓ−1

en, en−dhd〉.

where in the second to last equality we used [5, Lemma 5.2].

4. Decorated Dyck paths

Definition 4.1. The valleys of a Dyck path D ∈ D(n) are the indices

Val(D) := {2 ≤ i ≤ n | ai(D) ≤ ai−1(D)},

or the vertical steps that are directly preceded by a horizontal step.

Definition 4.2. The peaks of a Dyck path D ∈ D(n) are the indices

Peak(D) := {1 ≤ i ≤ n− 1 | ai+1(D) ≤ ai(D)} ∪ {n},

or the vertical steps that are followed by a horizontal step.

14



Definition 4.3. Fix n,m, a, b ∈ N, n ≥ 1, m, a, b ≥ 0. For every Dyck path
D ∈ D(n +m) with |Rise(D)| ≥ a, |Peak(D)| ≥ b and |Val(D)| ≥ m choose
three subsets of {1, . . . ,m+ n}:

(i) DRise(D) ⊆ Rise(D) (see Definition 2.4) such that |DRise(D)| = a and
decorate the corresponding vertical steps with a ∗.

(ii) DPeak(D) ⊆ Peak(D) such that |DPeak(D)| = b and decorate with
a • the points joining these vertical steps with the horizontal steps
following them. We will call these decorated peaks.

(iii) ZVal(D) ⊆ Val(D) such that |ZVal| = m and DPeak(D)∩ZVal(D) = ∅.
Label the corresponding vertical steps with a zero. These steps will be
called zero valleys.

We denote the set of these paths by DD(m,n)∗a,◦b. See Figure 3 for an
example.

0

0

∗

∗

Figure 3: Example of a decorated Dyck path
in DD(2, 6)∗2,◦2.

1

2

6

0

3

4

0

5

∗

∗

Figure 4: Path in PLD(2, 6)∗2 corresponding
to the one in Figure 3.

We define three statistics on DD(m,n)∗a,◦b.
The definition of the area of a path in DD(m,n)∗a,◦b is the same for a

path in PLD(m,n)∗a (see Definition 2.5).

Definition 4.4. For D ∈ DD(m,n)∗a,◦b. For 1 ≤ i ≤ n+m, we say that the
pair (i, j) is an inversion if
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• either ai(D) = aj(D), i ∕∈ DPeak(D), and j ∕∈ ZVal(D) (primary inver-
sion),

• or ai(D) = aj(D) + 1, j ∕∈ DPeak(D), and i ∕∈ ZVal(D) (secondary
inversion).

Then we define

dinv(D) := #{0 ≤ i < j ≤ n+m | (i, j) is an inversion.}

For example, the path in Figure 3 has dinv 6: 4 primary and 2 secondary.

Remark 4.5. Let D ∈ PLD(m,n). We define its dinv reading word as the
sequence of labels read starting from the ones in the main diagonal going
bottom to top, left to right; next the ones in the diagonal x+ y = 1 bottom
to top, left to right; then the ones in the diagonal x+ y = 2 and so on.

One can consider the paths in DD(m,n)∗a,◦b as partially labelled decorated
Dyck paths where the reading word is a shuffle of m 0’s, the string 1, · · · , n−
b, and the string n, · · ·n − b + 1. Indeed, given this restriction and the
information about the position of the zero labels and considering the b biggest
labels to label the decorated peaks, the rest of the labelling is fixed. With
regard to this labelling the Definitions 4.4 and 2.6 of the dinv coincide.

For example, the path in Figure 4 is the partially labelled Dyck path
corresponding to the decorated Dyck path in Figure 3. Indeed it has dinv
reading word 10263405 which is a shuffle of two 0’s and the strings 1, 2, 3, 4
and 6, 5. Its dinv equals 6: 4 primary and 2 secondary.

Finally we define a third statistic on this set: the bounce. In order to
do this, it is helpful to replace the zero valleys (the vertical step and the
horizontal step that precedes it) by diagonal steps. We construct the bounce
path as follows. Place a ball in the origin and send it travelling north. When
it hits the beginning of a horizontal or diagonal step it changes direction and
always travels parallel to the horizontal or diagonal step of the path in its
current column, until it hits the main diagonal. There it turns north again.
Repeat this process until the ball arrives at (m+ n,m+ n). See Figure 5 for
an example.

Now label the vertical and diagonal steps of the bounce path starting with
i = 0’s and changing the label to i+1 each time the bounce path touches the
main diagonal. Reading these labels bottom to top, we obtain the bounce
word of the path, denoted by b1(D) . . . bm+n(D). See Figure 5 for an example.
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Definition 4.6. Let D ∈ DD(m,n)∗a,◦b and b1(D) . . . bn+m(D) its bounce
word. We define

bounce(D) :=
"

i ∕∈S

bi(D),

where S is the set of the indices i obtained by starting at a decorated peak
and tracing a path to the east, parallel to the bounce path until this path
hits the bounce path at the end of its i-th vertical or diagonal step.

For example, the path in Figure 5 has bounce equal to 1.

0
0

0

0

0
0

0
0
0
0
0
0
0
0
0
1
1
1

Figure 5: Bounce path and bounce word (left) of a path in DD(6, 6)∗0,◦2.

4.1. Recursion for (dinv, area)

Define the subset

DDd(m,n\r)∗a,◦b ⊆ DD(m,n)∗a,◦b

to consist of the paths D ∈ DD(m,n)∗a,◦b such that

#{1 ≤ i ≤ n+m | ai(D) = 0 and i ∕∈ ZVal(D)} = r.

We set
DDdq,t(m,n\r)∗a,◦b :=

"

D∈DDd(m,n\r)∗a,◦b
qdinv(D)tarea(D)

Theorem 4.7. DDdq,t(m,n\r)∗a,◦b = F
(b,a)
n,r;m .
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Proof. We will show that DDdq,t(m,n\r)∗a,◦b satisfies the same recursion and
initial conditions as in Corollary 3.5. In other words we will show that

DDdq,t(m,n\r)∗a,◦b = tn−r−a

m"

j=0

r"

s=0

q(
s
2)
)
r

s

*

q

)
r + j − 1

j

*

q

× tm−j

n−r−a"

u=0

s+j"

v=0

q(
v
2)
)
s+ j

v

*

q

)
s+ j + u− 1

u

*

q

× DDdq,t(m− j, n− r\u+ v)∗a−v,◦b−(r−s)

and
DDdq,t(m,n\n) = δa,0q

(n−b
2 )

)
m+ n− 1

m

*

q

)
n

b

*

q

.

Let us start with the second identity. The set DDd(m,n\n) consists of
the paths whose area word contains only 0’s, indeed any valley that is not
at height 0 is preceded by a vertical step that is not a valley. Thus the area
must be zero. Furthermore there can be no rises, which explains δa,0. The
dinv between steps that are not zero valleys nor decorated peaks is counted
by q(

n−b
2 ). The dinv between zero valleys and things that are not zero valleys

are counted by
.
m+n−1

m

/
q

because we are not allowed to start with a zero
valley. Finally, the dinv between peaks and steps that are not zero valleys is
taken into account by

.
n
b

/
q
.

Now for the recursive step. We give an overview of the combinatorial
interpretations of all the variables appearing in this formula. We say that
a vertical step of a path is at height i if its corresponding letter in the area
word equals i.

• r is the number of zeroes in the area word whose index is not a zero
valley.

• r − s is the number of decorated peaks at height 0.

• The previous two imply that s is the number of zeroes in the area word
whose index in not a decorated peak nor a zero valley.

• j is the number of zero valleys at height 0.

• v is the number of decorated rises at height 1.
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• u + v is the number of 1’s in the area word whose index is not a zero
valley.

The strategy of this recursion is the following. Start from a path D in
DDd(m,n\r)∗a,◦b. Remove all the 0’s from the area word, and then remove
both the corresponding decoration on peaks, and decorations on rises at
height one (which are not rises any more). Then decrease all the remaining
letters by 1. In this way we obtain a path in

DDd(m− j, n− r\u+ v)∗a−v,◦b−(r−s).

Let us look at what happens to the statistics of the path.
The area goes down by the size (i.e. m+ n), minus the number of zeroes

in the area word (i.e. r + j) and the number of rises (i.e. a), since these
letters did not contribute to the area to begin with. This explains the term
tm+n−(r+j+a).

The factor q(
s
2) takes into account the primary dinv among 0’s that are

neither zero valleys nor decorated peaks. The factor
.
r
s

/
q

takes into account
the primary dinv among 0’s that are neither zero valleys nor decorated peaks,
and 0’s that are decorated peaks. Indeed, each time a one of the former
precedes one of the latter one unit of primary dinv is created. The factor.
r+j−1

j

/
q

takes into account the primary dinv among 0’s that are zero valleys
and the other 0’s, where we get r − 1 because the first 0 cannot be a zero
valley.

The factor q(
v
2) takes into account the secondary dinv among 1’s that

are decorated rises and 0’s that are directly below a decorated rise. The
factor

.
j+s
v

/
q

takes into account the secondary dinv among those 1’s, and
the remaining 0’s that are not decorated peaks. The factor

.
j+s+u−1

u

/
q

takes
into account the secondary among the remaining 1’s and the 0’s that are not
decorated peaks, where we get s− 1 because the first non-decorated peak 0
must be before the first 1.

Summing over all the possible values of j, s, u and v, we obtain the stated
recursion.

4.2. Recursion for (area, bounce)

Definition 4.8. A fall of a Dyck path is a horizontal step followed by another
horizontal step.
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There exists a natural map, mapping rises into falls. Indeed take D a
decorated Dyck path and i ∈ DRise(D), i.e. the i-th vertical step of D is
preceded by another vertical step and is decorated. Call P the starting point
of this i-th vertical step. We have that ai(D) = ai−1(D) + 1 ≥ 1 equals
the number of whole squares in the i-th row of D, between D and the main
diagonal. It follows that P lies on the diagonal line y = x + ai(D), which
we denote by L. Since the endpoint of D lies on the main diagonal y = x,
it follows that D must cross L after P . Call Q the unique first point after
P where D crosses L, i.e. Q lies on D and L, north of P , and the points of
D that are one step before and after Q lie on different sides of L. It follows
that the step ending at Q is a fall. Map the rise i to this fall. Look at see
Figure 6 for an example of this mapping where ai(D) = 2.

It is not hard to see that the number of squares in column containing
step ending at Q, between D and the main diagonal equals ai(D). Thus,
equivalent to the definition of the area in Definition 2.5 is the number of
whole squares that lie between the path and the main diagonal, except the
ones in the columns containing falls.

∗

∗

•
P

•
Q

Figure 6: Correspondence between rises and falls.

This time, we define the set

DDb(m,n\r)∗a,◦b
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to consist of the paths D

(i) with m zero valleys;

(ii) b decorated peaks that cannot be zero valleys and where we do not
allow the leftmost peak to be decorated;

(iii) n vertical steps that are not zero valleys;

(iv) a decorated falls where we allow the last step of the path to be a deco-
rated fall;

(v) starting with r vertical steps followed by a horizontal step.

We set the polynomial

DDbq,t(m,n\r)∗a,◦b :=
"

D∈DDb(m,n\r)∗a,◦b
qarea(D)tbounce(D)

Theorem 4.9. DDbq,t(m,n\r)∗b,◦a = F
(a,b)
n,r;m

Proof. We will show that DDbq,t(m,n\r)∗b,◦a satisfies the same recursion and
initial conditions as in Corollary 3.5. In other words we will show that

DDbq,t(m,n\r)∗b,◦a = tn−r−a

m"

j=0

r"

s=0

q(
s
2)
)
r

s

*

q

)
r + j − 1

j

*

q

× tm−j

n−r−a"

u=0

s+j"

v=0

q(
v
2)
)
s+ j

v

*

q

)
s+ j + u− 1

u

*

q

× DDbq,t(m− j, n− r\u+ v)∗b−(r−s),◦a−v.

and
DDbq,t(m,n\n)∗b,◦a = δa,0q

(n−b
2 )

)
m+ n− 1

m

*

q

)
n

b

*

q

.

Let us start with the second identity. The set DDbq,t(m,n\n)∗b,◦a con-
sists of the paths starting with n vertical steps followed by only horizontal
steps and zero valleys. Since zero valleys cannot be decorated peak and the
leftmost peak is not allowed to be decorated, this implies that there can be
no decorated peaks, which explains the factor δa,0. Now think of the deco-
rated falls as their corresponding decorated rises. The area east of the n first
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vertical steps is counted by q(
n−b
2 ).n

b

/
; we use the fact that any of these n

vertical steps may be a decorated rise, since we allowed the last step of the
path to be a fall. Finally, the area west of the rest of the path is counted by.
m+n−1

m

/
q
, the interlacing of the zero valleys and the horizontal steps, where

we must end with a horizontal step.
From [5, Lemma 2.13], we can deduce (replacing k by s, s by h and h by

u) that

)
j + s

v

*

q

)
j + s+ u− 1

u

*

q

= qv
)
u+ v − 1

v

*

q

)
u+ s+ j − 1

u+ v

*

q

+

)
u+ v − 1

v − 1

*

q

)
u+ j + s

u+ v

*

q

.

Multiplying this equation by q(
v
2) and setting u = h− v we get

q(
v
2)
)
j + s

v

*

q

)
j + s+ u− 1

u

*

q

= q(
v+1
2 )

)
h− 1

v

*

q

)
h− v + s+ j − 1

h

*

q

+ q(
v
2)
)
h− 1

v − 1

*

q

)
h− v + s+ j

h

*

q

and we see that the second term is just the first where v is replaced by
v − 1. Using this and regrouping some terms, we can rewrite the recursion

DDbq,t(m,n\r)∗b,◦a = tn−r−a

m"

j=0

r"

s=0

q(
s
2)
)
r

s

*

q

)
r + j − 1

j

*

q

× tm−j

n−r−a"

h=0

s+j"

v=0

q(
v+1
2 )

)
h− 1

v

*

q

)
h− v + s+ j − 1

h

*

q

×
'
DDb(m− j, n− r\h)∗b−(r−s),◦a−v

+ DDb(m− j, n− r\h)∗b−(r−s),◦a−(v−1)
(
.

As when we defined the bounce, we will think of blank valleys (the vertical
step and the preceding horizontal step) as diagonal steps.

Let us again start with a list of combinatorial interpretations for the
variables appearing in this formula.

• r is the number of vertical steps in the first column.
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• r − s is the number of decorated falls above the first bounce.

• We can conclude from the previous two that s is the number of hori-
zontal steps above the first bounce that are not decorated falls.

• j is the number of zero valleys above the first bounce.

• v is the number of decorated peaks above the first bounce.

• h is the number of vertical steps in the column where the bounce path
first hits the main diagonal.

The strategy of this recursion is the following. Start from a path D in
DDb(m,n\r)∗b,◦a. Remove the r+ j first rows and columns of the path. The
remaining path goes from (r+ j, r+ j+h) to (m+n,m+n). Add h vertical
steps to the beginning of this path an we obtain a Dyck path D′ of size
m + n − (r + j). See Figure 7 for an illustration. Call P (D) the part of D
that gets deleted (i.e. the path from (0, 0) to (r + j, r + j + h)).

0
0

0

0

∗

∗

∗

0

0

0

0

0

0

0

1

1∗
1

1

2∗

Figure 7: Bounce recursion

Note that an ambiguous situation arises when the last vertical step of
P (D) is part of a decorated peak, since the leftmost peak of D′ is never
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decorated. We solve this by considering two terms for the reduced path, in
the first the number of decorated peaks gets reduced by v and the last peak
of P (D) is never decorated and in the second the number of decorated peaks
gets reduced by v − 1 and the last peak of P (D) is always decorated. So
D′ is a path either in DDb(m− j, n− r\h)∗b−(r−s),◦a−v or in DDb(m− j, n−
r\h)∗b−(r−s),◦a−(v−1).

Going from D to D′, the bounce goes down by the size (i.e. m + n) of
the path, minus the number of zeroes in the bounce word (i.e. r+ j) and the
number of decorated peaks of D (i.e. a), since these letters of the bounce
word did not contribute to the bounce to begin with. This explains the term
tn+m−(r+j+a).

The area goes down by the number of squares under P (D) contributing
to the area of D.

First consider the whole squares under the bounce path. There are r
horizontal steps in this section of the bounce path. Since there are no vertical
steps the (r−i)-th horizontal step of the bounce path has exactly i−1 squares
of area under it (and above the main diagonal). Some of these however, do
not contribute to area because they are under a decorated fall. Since r − s
is the number of decorated falls over the first bounce, s is the number of
horizontal steps in the first bounce of the bounce path that do not lie under
decorated falls. So choosing s different values between 0 and r− 1 yields the
term q(

s
2)
.
r
s

/
q
. The positioning of the j diagonal steps (which cannot lie under

falls) among r− 1 horizontal steps (indeed the last step must be horizontal)
explains the term

.
r+j−1

j

/
q
.

Next, consider the area under P (D) and above the bounce path. Choosing
which of the h vertical steps of P (D) are decorated peaks and inserting the
vertical step that follows it gives a factor of q(

v+1
2 ).h−1

v

/
q
, indeed we require

that the last vertical step is not a peak. Finally, we need to choose an
interlacing between the s+ j− v horizontal steps that are not decorated falls
and do not follow a decorated peak or diagonal steps and the h vertical steps
that are not decorated peaks, which gives

.
h−v+s+j−1

h

/
q

because the first step
cannot be vertical.

4.3. A statistics swapping bijection
Let DDb(m,n\r)△b,◦a be the set of decorated Dyck paths of size m + n

with m zero valleys, a decorated peaks, and b decorated fake falls, where by
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fake fall we mean any horizontal step that is not in the same column of a zero
valley, and that is immediately followed by either another horizontal step or
a vertical step that is both a zero valley and a peak. The last horizontal
step (if it is not in the same column of a zero valley) is also a fake fall. We
can define statistics area and bounce on this set as usual, not counting the
squares below decorated fake falls, and computing the bounce the same way
we did for DDb(m,n\r)∗b,◦a. We have the following result.

Theorem 4.10. There is a bijection between DDd(m,n\r)∗a,◦b and
DDb(m,n\r)△b,◦a mapping (dinv, area) to (area, bounce).

This map generalizes the classical sweep map on Dyck paths.

Proof. Let D ∈ DDd(m,n\r)∗a,◦b, and consider its area word. We draw a
Dyck path as follows. We scan the area word left to right and draw a vertical
step for each 0 that is not a zero valley. Then, for i = 0, 1, 2, . . . , we scan
the area word again and draw a horizontal step for each i that is not a zero
valley, a vertical step followed by a horizontal step for each i that is a zero
valley, and a vertical step for each i+ 1 that is not a zero valley. We repeat
the procedure until there are no more letters in the area word. It is easy to
check that the resulting path is a Dyck path. See Figure 8 for an example.

By construction, zero valleys are mapped to a subset of the peaks (since
we drew a peak every time we scanned one). We put a zero valley in the first
vertical step of each column containing one of the peaks that came from a
zero valley; this way, the number of zero valleys is preserved.

We also have that peaks that are not zero valleys are mapped into fake
falls. In fact we have such a peak whenever we scan two i’s with no i + 1
in between, and the first i is not a zero valley. In the image, those peaks
correspond to horizontal steps followed either by another horizontal step (if
the second i is not a zero valley), or by a vertical step that is both a zero
valley and a peak (if the second i is a zero valley). The topmost, rightmost
peak correspond to the last horizontal step (there is no i+1), which is also a
fake fall. Whenever such a peak is decorated, we decorate the corresponding
fake fall in the image.

Finally, rises are mapped into valleys. In fact we have a rise whenever we
scan an i followed by an i + 1, which means that we draw a horizontal step
(possibly preceded by a vertical step if the i is a zero valley) followed by a
vertical step, which is exactly the definition of valley. Whenever such a rise
is decorated, we decorate the peak in the same column as the corresponding
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valley in the image. It means that the leftmost peak is never decorated, since
it doesn’t correspond to a valley.

The process is straightforward to revert, since the area word of the start-
ing path is completely determined by the interlacing between horizontal and
vertical steps of the image, and the same is true for the position of the dec-
orations. Hence the map is bijective.

We now have to prove that the statistics are preserved. It is an easy check
that the bounce word of the image is an anagram of the area word of the
starting Dyck path, where the letters that are not zero valleys correspond
to vertical steps, and the zero valleys correspond to diagonal steps. Further-
more, if a letter is a decorated rise, the corresponding letter of the bounce
word of the image will be cancelled by the corresponding decorated peak.

The area below each horizontal step in the image is exactly the primary
dinv on the right and the secondary dinv on the left given by the corre-
sponding letter of the area word of the starting path. In fact, the height of
that horizontal step with respect to the diagonal is the number of vertical
steps before it minus the number of horizontal steps before it, which is the
number of i’s in the original area word on its left that are not zero valleys,
plus the number of i+ 1’s in the original area word on its right that are not
zero valleys. The primary dinv is the area below the bounce path (i.e. the
number of i’s in the original area word on its left that are not zero valleys),
the secondary is the area above it (i.e. the number of i + 1’s in the original
area word on its right that are not zero valleys - the area in a square crossed
diagonally by the bounce path counts as above). If that letter is a decorated
peak, then the corresponding horizontal step will be a decorated fake fall,
so the dinv in the preimage and to the area in the image drop by the same
amount.

The thesis follows.

5. Doubly decorated polyominoes

In [4]*Section 3 the authors define decorated reduced parallelogram poly-
ominoes.

Definition 5.1 ([4, Definition 3.1]). A reduced polyomino of size m × n is
a pair of lattice paths from (0, 0) to (m,n) using only north and east steps,
such that the first one (the dark path) lies always weakly above the second
one (the light path).
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Figure 8: A path D ∈ DDd(m,n\r)∗a,◦b with its area word shown (left) and its image
(right).

The set of reduced polyominoes of size m × n is denoted by RP(m,n).
Reduced polyominoes are encoded by their area word.

Definition 5.2. An area word is a (finite) string of symbols a1a2 · · · an in a
well-ordered alphabet such that if ai < ai+1 then ai+1 is the successor of ai
in the alphabet.

The area word of a reduced polyomino is an area word in the alphabet
N := 0 < 0̄ < 1 < 1̄ < 2 < . . . starting with 0.

It is computed in the following way. The first step consists of drawing a
diagonal of slope −1 from the end of every horizontal light step, and attaching
to that step the length of that diagonal (i.e. the number of squares it crosses,
that can also be zero). Then, one puts a dot in every square not crossed by
any of those diagonals, and attaches to each vertical dark step the number
of dots in the corresponding row. Next, one bars the numbers attached to
vertical dark steps. The area word starts (artificially) with a 0, then one
reads those numbers following the diagonals of slope −1, writing down the
labels when encountering the end of its step and the dark label before the
light one. The correspondence is bijective. See Figure 9 for an example.

Remark 5.3. The area word of a reduced polyomino of size m× n has m+ 1
unbarred letters (including the starting 0) and n barred letters.

In [4, Section 3] two kind of decorations were introduced. We introduce
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Figure 9: A 6× 11 reduced polyomino. Its area word is 00̄11̄21̄1̄10̄0̄10̄0̄0̄111̄1̄.

now two more, together with more general sets of decorated reduced poly-
ominoes.

Definition 5.4 ([4, Definition 3.3]). The unbarred rises of a reduced poly-
omino P are the letters of the area word that are unbarred, and that are the
successor, in the alphabet N, of the letter immediately to their left.

Definition 5.5. The barred rises of a reduced polyomino P are the letters
of the area word that are barred, and that are the successor, in the alphabet
N, of the letter immediately to their left.

We denote by RP(m,n)∗k,j the set of reduced polyominoes of size m× n
with k decorated unbarred rises and j decorated barred rises.

Definition 5.6 ([4, Definition 3.5]). The light peaks of a reduced polyomino
P are the horizontal light steps that immediately follow a vertical light step.

Definition 5.7. The dark valleys of a reduced polyomino P are the vertical
dark steps that immediately follow a horizontal dark step. The first dark
step counts as a valley if it is vertical.

We denote by RP(m,n)◦k,j the set of reduced polyominoes of size m× n
with k decorated light peaks and j decorated dark valleys. We also identify
RP(m,n) = RP(m,n)∗0,0 = RP(m,n)◦0,0.
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Let us fix some more notation.

RP(m,n) := {P | P is a m× n reduced polyomino} (34)
RP(m\r, n)∗0,0 := {P ∈ RP(m,n) | P has r 0’s in area word} (35)
RP(m\r, n)∗k,j := {P ∈ RP(m,n)∗k,j | P has r 0’s in area word} (36)
RP(m\r, n)◦0,0 := {P ∈ RP(m,n) | P has r−1 0’s in bounce word} (37)
RP(m\r, n)◦k,j := {P ∈ RP(m,n)◦k,j | P has r−1 0’s in b. word} (38)

Notice that we are including the first, artificial 0 in (35) and that we
replaced r with r − 1 in (37). In particular, r can be equal to m+ 1.

We now define three statistics on reduced polyominoes, namely area,
bounce, and dinv.

Definition 5.8. For a doubly decorated reduced polyomino P ∈ RP(m,n)∗k,j

we let area(P ) be the sum of the letters in its area word (disregarding the
bars), not counting decorated rises of either type.

We now want to define the bounce path of a reduced polyomino (see also
[4, Section 3]). It is a lattice path that starts from (0, 0) and goes east until it
hits the beginning of a vertical light step, then it goes north until it hits the
beginning of a dark horizontal steps, then it bounces every time it hits the
beginning of a step of any of the two paths. The labelling of the bounce path
starts from 0 and goes up by one in the alphabet N every time it changes
direction.

The bounce word of a reduced polyomino is the sequence of labels at-
tached to the steps of its bounce path.

Definition 5.9. For a doubly decorated reduced polyomino P ∈ RP(m,n)◦k,j

we let bounce(P ) be the sum of the letters in its bounce word (disregarding
bars), not counting the barred letters that lie in the same row of a deco-
rated dark valley, nor the unbarred letters that lie in the same column of a
decorated light peak.

Before introducing the third statistic, we need one more definition.

Definition 5.10. Let P ∈ RP(m,n). For 1 ≤ i < j ≤ m+n, we say that the
pair (i, j) is an inversion if i-th letter of the area word of P is the successor
of the j-th letter of the area word of P in the alphabet N.

29



0 0 0̄

0̄

0̄

0̄

1 1̄

1̄

2 2̄

2̄
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3 3 3̄
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Figure 10: A doubly decorated reduced polyomino with its bounce path shown.

Definition 5.11. For a reduced polyomino (possibly a doubly decorated
one) P ∈ RP(m,n)∗k,j or P ∈ RP(m,n)◦k,j we let dinv(P ) be the number of
its inversions, which is not influenced by any decoration.

Finally, we define q, t-enumerators for our sets as follows:

RPq,t(m,n)∗k,j :=
"

P∈RP(m,n)∗k,j

qdinv(P )tarea(P )

RPq,t(m,n)◦k,j :=
"

P∈RP(m,n)◦k,j

qarea(P )tbounce(P )

and the same for the other sets in which r is specified. We have that these
polynomials satisfy the same recursion as the symmetric function does.

5.1. Recursion for (area, bounce)

Theorem 5.12. RPq,t(m\r, n)◦k,j = F
(m+1−j,k)
m+1,r;n−j .

Proof. It is enough to prove that RPq,t(m\r, n)◦k,j satisfy the recursion

RPq,t(m\r, n)◦k,j = tm−r−k+1

r"

w=0

n"

s=0

q(
w
2)
)
r

w

*

q

)
r + s− w − 1

s− w

*

q

× RPq,t(n− 1 \ s, m− r + 1)◦j−w,k
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with
RPq,t(m\m+ 1, n)◦k,j = δk,0q

(j2)
)
m+ 1

j

*

q

)
m+ n− j

m

*

q

.

0 0

0̄

0̄

0̄ 1 1 1 1 1

1̄

1̄ 2 2 2 2 2

2̄

2̄

Figure 11: One step of the recursion for reduced polyominoes.

After one step of the recursion, the polyomino will be the one delimited
by the orange rectangle, flipped along the line x = y. The bounce drops by
m−r−k+1, because every unbarred letter decreases by one in the alphabet
(so its value drops by 1), except the r − 1 0’s, that are just removed, and
the k letters corresponding to decorated light peaks, whose value actually
decrease, but they are not counted while computing bounce and so they
should be ignored.

The factor q(
w
2)
.
r
w

/
q
takes care of the area in the rows containing a vertical

step immediately after one of the w decorated dark valleys with horizontal
coordinate from 0 to r − 1. The factor

.
r+s−w−1

s−w

/
q

takes care of the area in
the remaining s− w rows, where s is the number of 0̄’s in the bounce word.

Now, the light and the dark path switch roles, and the w decorations in
the first r − 1 columns disappear. The rest is easy to check.

5.2. Recursion for (dinv, area)

Theorem 5.13. RPq,t(m\r, n)∗k,j = F
(m+1−j,k)
m+1,r;n−j .
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Proof. It is enough to prove that RPq,t(m\r, n)∗k,j satisfy the recursion

RPq,t(m\r, n)∗k,j = tm−r−k+1

r"

w=0

n"

s=0

q(
w
2)
)
r

w

*

q

)
r + s− w − 1

s− w

*

q

× RPq,t(n− 1 \ s, m− r + 1)∗j−w,k

with
RPq,t(m\m+ 1, n)◦k,j = δk,0q

(j2)
)
m+ 1

j

*

q

)
m+ n− j

m

*

q

.

The recursive step consists in removing all the 0’s, and going down by one
step in the alphabet 0 < 0̄ < 1 < . . . . The area drops by m+ 1− k − r (the
number of unbarred, non decorated letters, minus the number of 0’s). The
factor q(

w
2)
.
r
w

/
q

takes care of the inversions given by the w decorated 0̄’s and
the 0’s. The factor

.
r+s−w−1

s−w

/
q

takes care of the inversions between in the
remaining s− w 0̄’s and the 0’s, where s is the number of total 0̄’s.

Now, barred and unbarred letters switch roles, and the w decorations of
rises of type 00̄ disappear. The rest is easy to check.

5.3. A statistics swapping bijection
We also have a combinatorial proof of the identity

RPq,t(m,n)∗k,j = RPq,t(m,n)◦k,j.

Theorem 5.14. For m ≥ 0, n ≥ 0, k ≥ 0, and 1 ≤ r ≤ m + 1, there
is a bijection ζ : RP(m\r, n)∗k,j → RP(m\r, n)◦k,j mapping the bistatistic
(dinv, area) to (area, bounce).

Proof. The map is essentially the same one described in [1, Section 4], ad-
justed to fit reduced polyominoes as in [4, Theorem 3.9].

Let us recall the definition of the ζ map. Pick a reduced polyomino with
some decorated dark valleys and light peaks and draw its bounce path; then,
project the labels of the bounce path on both the dark and the light path.
Let us call bounce point a vertex of the bounce path in which it changes
direction. Now, build the area word of the image as follows: artificially start
with a 0, then pick the first bounce point on the dark path, and write down
the 0’s and the 0̄’s as they appear going upwards along the dark path up to
that point (in this case, the relative order will always be with the 0̄ first, and
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all the 1’s next). Then, go to the first bounce point on the light path, and
insert the 1’s after the correct number of 0̄’s, in the same relative order in
which they appear going upwards to the previous bounce point. If a letter
is decorated, keep the decoration. Now, move to the second bounce point on
the dark path, and repeat. See Figure 12 for an example.

As proved in [1, Section 4], the result will be the area word of a m × n
reduced polyomino. It is also proved that area is mapped to dinv, since the
squares of the starting reduced polyomino correspond to the inversions on
the image.

Dark valleys are mapped into barred rises, because when reading the dark
path bottom to top, one reads the horizontal step first, which corresponds to
an unbarred letter, and the vertical step next, which correspond to the next
barred letter. Moreover, the decoration is kept on a letter with the same
value. The same argument applies to light peaks being mapped to unbarred
rises. This implies that bounce is mapped to area.

Furthermore, by construction one has that the number of 0’s in the bounce
word is equal to the number of 0’s in the area word of the image polyomino
(before adding the starting artificial one), since that area word is just an
anagram of the bounce word of the preimage.

0 0 0̄

0̄

0̄

1 1 1 1 1 1̄

1̄

2 2 2 2 2 2̄

2̄

0̄

0̄

0̄

0

0

Figure 12: The first step needed to compute the ζ map. The final image will be the

reduced polyomino with area word 00̄0̄0
∗
0̄
∗
11̄

∗
22̄2211

∗
1̄222̄110

6. A statistics preserving bijection

We have a combinatorial proof of the following theorem.
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Theorem 6.1. We have

RPq,t(m\r, n)∗k,j = DDdq,t(n− j,m+ 1\r)∗k,◦m+1−j,

where DD(n− j,m+ 1\r)∗k,◦m+1−j is the set of decorated Dyck paths of size
m + n − j + 1 with m + 1 labels, n − j zero valleys, r 0’s in the area word
that are not zero valleys, m+ 1− j decorated peaks, and k decorated rises.

Proof. We want to map RP(m\r, n)∗k,j to DD(n− j,m+ 1\r)∗k,◦m+1−j, pre-
serving the bistatistic (dinv, area). We proceed as follows.

Given the area word of such a polyomino, ignore the barred decorated
letters. The remaining ones, disregarding bars, still form the area word of a
Dyck path. This will be the actual path. If an unbarred letter is a decorated
rise, then its image is still a rise, and we decorate it. We put zero labels on the
steps corresponding to (non decorated) barred letters; those must be valleys,
since there can’t be a letter of strictly smaller value in the original area
word of the polyomino. Next, we decorate all the peaks, except those whose
corresponding letter of the area word of a polyomino is an unbarred letter
followed by a decorated rise. Notice that all the steps that are neither zero
valleys nor decorated peaks in the image must have this property (i.e. coming
from an unbarred letter followed by a decorated rise). See Example 6.2.

This maps obviously preserves the area. If all the steps that are not zero
valleys are decorated peaks, then the dinv can be counted only on those steps
by looking at the primary on the left and the secondary on the right, and both
those only come from zero valleys (on the same level on the left, one level
lower on the right); those are exactly the contributions on the polyomino
(counted on unbarred letters). If not, then each steps that neither a zero
valley, nor a decorated peak adds a contribution given by its secondary dinv on
the right and its primary on the left, which is exactly the contribution given
on the dinv of the polyomino by the decorated barred letter that corresponds
to that step on the image.

To build the inverse map, one proceeds as follows. Given the area word
of such a decorated Dyck path, one puts bars on letters corresponding to
zero valleys, keeps the decorations on the rises (which are all unbarred, since
all the barred letters are valleys and hence they can’t be rises) then adds a
decorated barred letter after each unbarred letter that does not correspond
to a decorated peak (in particular one should do that if it doesn’t correspond
to a peak at all). It is easy to check that in this way one obtains the area
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word of a doubly decorated polyomino of the right size, and that this map is
the inverse of the other.

Example 6.2. Let 00̄0̄0
∗
0̄
∗
11̄

∗
22̄2211

∗
1̄222̄110 be the area word of a 12 × 7

doubly decorated reduced polyomino.
We have two decorated barred rises, which we remove. The area word we

get is 00̄0̄0
∗
11̄

∗
22̄2211222̄110, which (disregarding bars) is the area word of the

Dyck path in Figure 13.

13
0

0
1
12

0
7

0
6

5
10

2
4

3
0

9
8

11

Figure 13: The image of the reduced polyomino in Example 6.2

We put zero labels on rows corresponding to barred letters (which are
all valleys), and decorate all the peaks (i.e. labelling with big numbers in
decreasing order) but the letters that were immediately before a decorated
barred rise (which are the second 0 and the third 1, which will get labels 1
and 2).
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7. Open problems

Recall the identity (33), i.e.

F
(d,ℓ)
n,k;p =

"

γ⊢n+p−d

(Π−1∇En−ℓ,k[X])
--
X=MBγ

Πγ

wγ

eℓ[Bγ]ep[Bγ]. (39)

Using (20) and (23), it is not hard to show that for any g ∈ Λ(n−ℓ),

"

γ⊢n+p−d

(Π−1∇g[X])
--
X=MBγ

Πγ

wγ

eℓ[Bγ]ep[Bγ] =
0
∆φ∆eℓ

φ−1(hpen−d)∇g, hn−ℓ

1
,

(40)
where φ is the operator defined for any f ∈ Λ by

φf [X] := f [MX]. (41)

So we can write more compactly

F
(d,ℓ)
n,k;p =

0
∆φ∆eℓ

φ−1(hpen−d)∇En−ℓ,k, hn−ℓ

1
. (42)

For any composition α = (α1,α2, . . . ,αℓ(α)), consider the symmetric functions
Cα defined by

Cα := Cα1Cα2 · · ·Cαℓ(α)
(1) (43)

where the operators Cm are the ones appearing in [11]. Notice that the Cα

are the essential ingredients of the compositional Shuffle conjecture proved
by Carlsson and Mellit in [3]. Recall also from [11] the identity

En,k =
"

α⊨n
ℓ(α)=k

Cα. (44)

Lead by computer evidence, we risk the following conjecture.

Conjecture 7.1. For any composition α ⊨ n− ℓ,
0
∆φ∆eℓ

φ−1(hpen−d)∇Cα, hn−ℓ

1
∈ N[q, t]. (45)

Observe that summing over compositions α ⊨ n − ℓ with ℓ(α) = k, and
using (44), we get precisely our polynomials (42).
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In support of this conjecture, it is not hard to see that for p = 0 we have
0
∆φ∆eℓ

φ−1(h0en−d)∇Cα, hn−ℓ

1
=

2
∆hℓen−d−ℓ

∇Cα, hn−ℓ

3
(46)

= 〈∆hℓ
∇Cα, en−d−ℓhd〉 , (47)

which are precisely the polynomials appearing in the 4-variable Catalan con-
jecture in [12], proved by Zabrocki in [17] by showing that they have a “com-
positional” combinatorial interpretation.

In fact, computer experiments show that the t-enumerator of the area of
decorated Dyck paths of size p + n with p zero valleys, ℓ decorated rises,
d decorated peaks, and diagonal composition that ignores the rows of the
decorated rises and of the zero valleys α (so that α ⊨ n − ℓ) equals the
expression in (45) at q = 1. Unfortunately the q, t-enumerator of (dinv,area)
of the same set seems to be generally different from the expression in (45).

Still, there might be a combinatorial interpretation of these polynomials
that extends the one of the 4-variable Catalan, which in turn would refine
our Theorem 4.7.
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